norse.torch.module.SequentialState#
- class norse.torch.module.SequentialState(*args: Module, return_hidden: bool = False)[source]#
A sequential model that works like PyTorch’s
Sequentialwith the addition that it handles neuron states.- Arguments:
args (*torch.nn.Module): A list of modules to sequentially apply in the forward pass
- Example:
>>> import torch >>> import norse.torch as snn >>> data = torch.ones(1, 1, 16, 8, 4) # Single timestep, Single Batch, 16 channels >>> model = snn.SequentialState( >>> snn.Lift(torch.nn.Conv2d(16, 8, 3)), # (1, 1, 8, 6, 2) >>> torch.nn.Flatten(3), # (1, 1, 8, 12) >>> snn.LIFRecurrent(12, 6), # (1, 1, 8, 6) >>> snn.LIFRecurrent(6, 1) # (1, 1, 8, 1) >>> ) >>> model(data)
- Example with recurrent layers:
>>> import torch >>> import norse.torch as snn >>> data = torch.ones(1, 16, 8, 4) # Single timestep >>> model = snn.SequentialState( >>> snn.Lift(torch.nn.Conv2d(16, 8, 3)), # (1, 8, 6, 2) >>> torch.nn.Flatten(2), # (1, 8, 12) >>> snn.LSNNRecurrent(12, 6), # (1, 8, 6) >>> torch.nn.RNN(6, 4, 2), # (1, 6, 4) with 2 recurrent layers >>> snn.LIFRecurrent(4, 1) # (1, 4, 1) >>> ) >>> model(data)
- __init__(*args: Module, return_hidden: bool = False)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(*args[, return_hidden])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
append(module)Append a given module to the end.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extend(sequential)extra_repr()Set the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(input_tensor[, state])Feeds the input to the modules with the given state-list.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.insert(index, module)ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
pop(key)register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_forward_state_hooks(forward_hook)Registers hooks for all state*ful* layers.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_pre_hook(hook)Register a pre-hook for the
load_state_dict()method.remove_forward_state_hooks()Disables and discards the forward state hooks, registered in :meth:`register_forward_state_hooks`_.
requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining