norse.torch.functional.lif_adex.LIFAdExParameters#
- class norse.torch.functional.lif_adex.LIFAdExParameters(adaptation_current: Tensor = tensor(4), adaptation_spike: Tensor = tensor(0.0200), delta_T: Tensor = tensor(0.5000), tau_ada_inv: Tensor = tensor(2.), tau_syn_inv: Tensor = tensor(200.), tau_mem_inv: Tensor = tensor(100.), v_leak: Tensor = tensor(0.), v_th: Tensor = tensor(1.), v_reset: Tensor = tensor(0.), method: str = 'super', alpha: float = 100.0)[source]#
Parametrization of an Adaptive Exponential Leaky Integrate and Fire neuron
Default values from NeuralEnsemble/PyNN
- Parameters:
adaptation_current (torch.Tensor): adaptation coupling parameter in nS adaptation_spike (torch.Tensor): spike triggered adaptation parameter in nA delta_T (torch.Tensor): sharpness or speed of the exponential growth in mV tau_syn_inv (torch.Tensor): inverse adaptation time
constant (\(1/\tau_\text{ada}\)) in 1/ms
- tau_syn_inv (torch.Tensor): inverse synaptic time
constant (\(1/\tau_\text{syn}\)) in 1/ms
- tau_mem_inv (torch.Tensor): inverse membrane time
constant (\(1/\tau_\text{mem}\)) in 1/ms
v_leak (torch.Tensor): leak potential in mV v_th (torch.Tensor): threshold potential in mV v_reset (torch.Tensor): reset potential in mV method (str): method to determine the spike threshold
(relevant for surrogate gradients)
alpha (float): hyper parameter to use in surrogate gradient computation
- __init__()#
Methods
__init__
()count
(value, /)Return number of occurrences of value.
index
(value[, start, stop])Return first index of value.
Attributes
adaptation_current
Alias for field number 0
adaptation_spike
Alias for field number 1
alpha
Alias for field number 10
delta_T
Alias for field number 2
method
Alias for field number 9
tau_ada_inv
Alias for field number 3
tau_mem_inv
Alias for field number 5
tau_syn_inv
Alias for field number 4
v_leak
Alias for field number 6
v_reset
Alias for field number 8
v_th
Alias for field number 7