norse.torch.module.receptive_field.SpatialReceptiveField2d#
- class norse.torch.module.receptive_field.SpatialReceptiveField2d(in_channels: int, size: int, rf_parameters: Tensor, aggregate: bool = True, domain: float = 8, optimize_fields: bool = True, optimize_log: bool = True, **kwargs)[source]#
Creates a spatial receptive field as 2-dimensional convolutions. The rf_parameters are a tensor of shape (n, 5) where n is the number of receptive fields. If the optimize_fields flag is set to True, the rf_parameters will be optimized during training.
- Example:
>>> import torch >>> from norse.torch import SpatialReceptiveField2d >>> parameters = torch.tensor([[1., 1., 1., 0., 0., 0., 0.]]) >>> m = SpatialReceptiveField2d(1, 9, parameters) >>> m.weights.shape torch.Size([1, 1, 9, 9]) >>> y = m(torch.empty(1, 1, 9, 9)) >>> y.shape torch.Size([1, 1, 1, 1])
- Arguments:
in_channels (int): Number of input channels size (int): Size of the receptive field rf_parameters (torch.Tensor): Parameters for the receptive fields in the order (scale, angle, ratio, x, y, dx, dy) aggregate (bool): If True, the receptive fields will be aggregated across channels. Defaults to True. domain (float): The domain of the receptive field. Defaults to 8. optimize_fields (bool): If True, the rf_parameters will be optimized during training. Defaults to True. **kwargs: Additional arguments for the torch.nn.functional.conv2d function.
- __init__(in_channels: int, size: int, rf_parameters: Tensor, aggregate: bool = True, domain: float = 8, optimize_fields: bool = True, optimize_log: bool = True, **kwargs) None[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(in_channels, size, rf_parameters[, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x)Define the computation performed at every call.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining