norse.torch.module.coba_lif.CobaLIFCell#
- class norse.torch.module.coba_lif.CobaLIFCell(input_size: int, hidden_size: int, p: CobaLIFParameters = (tensor(0.2000), tensor(0.2000), tensor(5.), tensor(0.2500), tensor(-100), tensor(60), tensor(-20), tensor(-70), tensor(-10), 'super', 100.0), dt: float = 0.001)[source]#
Module that computes a single euler-integration step of a conductance based LIF neuron-model. More specifically it implements one integration step of the following ODE
\[\begin{split}\begin{align*} \dot{v} &= 1/c_{\text{mem}} (g_l (v_{\text{leak}} - v) + g_e (E_{\text{rev_e}} - v) + g_i (E_{\text{rev_i}} - v)) \\ \dot{g_e} &= -1/\tau_{\text{syn}} g_e \\ \dot{g_i} &= -1/\tau_{\text{syn}} g_i \end{align*}\end{split}\]together with the jump condition
\[z = \Theta(v - v_{\text{th}})\]and transition equations
\[\begin{split}\begin{align*} v &= (1-z) v + z v_{\text{reset}} \\ g_e &= g_e + \text{relu}(w_{\text{input}}) z_{\text{in}} \\ g_e &= g_e + \text{relu}(w_{\text{rec}}) z_{\text{rec}} \\ g_i &= g_i + \text{relu}(-w_{\text{input}}) z_{\text{in}} \\ g_i &= g_i + \text{relu}(-w_{\text{rec}}) z_{\text{rec}} \\ \end{align*}\end{split}\]where \(z_{\text{rec}}\) and \(z_{\text{in}}\) are the recurrent and input spikes respectively.
- Parameters:
input_size (int): Size of the input. hidden_size (int): Size of the hidden state. p (LIFParameters): Parameters of the LIF neuron model. dt (float): Time step to use.
Examples:
>>> batch_size = 16 >>> lif = CobaLIFCell(10, 20) >>> input = torch.randn(batch_size, 10) >>> output, s0 = lif(input)
- __init__(input_size: int, hidden_size: int, p: CobaLIFParameters = (tensor(0.2000), tensor(0.2000), tensor(5.), tensor(0.2500), tensor(-100), tensor(60), tensor(-20), tensor(-70), tensor(-10), 'super', 100.0), dt: float = 0.001)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__
(input_size, hidden_size[, p, dt])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Set the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(input_tensor[, state])Define the computation performed at every call.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module)Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training