norse.torch.module.lif.LIFRecurrentCell#
- class norse.torch.module.lif.LIFRecurrentCell(input_size: int, hidden_size: int, p: LIFParameters = (tensor(200.), tensor(100.), tensor(0.), tensor(1.), tensor(0.), 'super', tensor(100.)), **kwargs)[source]#
Module that computes a single euler-integration step of a leaky integrate-and-fire (LIF) neuron-model with recurrence but without time. More specifically it implements one integration step of the following ODE
\[\begin{align*} \dot{v} &= 1/\tau_{\text{mem}} (v_{\text{leak}} - v + i) \ \dot{i} &= -1/\tau_{\text{syn}} i \end{align*}\]together with the jump condition
\[z = \Theta(v - v_{\text{th}})\]and transition equations
\[\begin{align*} v &= (1-z) v + z v_{\text{reset}} \ i &= i + w_{\text{input}} z_{\text{in}} \ i &= i + w_{\text{rec}} z_{\text{rec}} \end{align*}\]where \(z_{\text{rec}}\) and \(z_{\text{in}}\) are the recurrent and input spikes respectively.
- Example:
>>> data = torch.zeros(5, 2) # 5 batches, 2 neurons >>> l = LIFRecurrentCell(2, 4) >>> l(data) # Returns tuple of (Tensor(5, 4), LIFState)
- Parameters:
input_size (int): Size of the input. Also known as the number of input features. hidden_size (int): Size of the hidden state. Also known as the number of input features. p (LIFParameters): Parameters of the LIF neuron model. input_weights (torch.Tensor): Weights used for input tensors. Defaults to a random
matrix normalized to the number of hidden neurons.
- recurrent_weights (torch.Tensor): Weights used for input tensors. Defaults to a random
matrix normalized to the number of hidden neurons.
- autapses (bool): Allow self-connections in the recurrence? Defaults to False. Will also
remove autapses in custom recurrent weights, if set above.
dt (float): Time step to use.
- __init__(input_size: int, hidden_size: int, p: LIFParameters = (tensor(200.), tensor(100.), tensor(0.), tensor(1.), tensor(0.), 'super', tensor(100.)), **kwargs)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(input_size, hidden_size[, p])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(input_tensor[, state])Define the computation performed at every call.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.initial_state(input_tensor)ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining