norse.torch.functional.lif_feed_forward_adjoint_step_sparse

norse.torch.functional.lif_feed_forward_adjoint_step_sparse(input: torch.Tensor, s: norse.torch.functional.lif.LIFFeedForwardState, p: norse.torch.functional.lif.LIFParameters = LIFParameters(tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=tensor(100.)), dt: float = 0.001)Tuple[torch.Tensor, norse.torch.functional.lif.LIFFeedForwardState][source]

Implementes a single euler forward and adjoint backward step of a leaky integrate and fire neuron with current based exponential synapses.

Parameters:

input (torch.Tensor): input spikes from other cells s (LIFFeedForwardState): state of leaky integrate and fire neuron p (LIFParameters): leaky integrate and fire parameters dt (float): time step of integration