norse.torch.functional.lsnn_feed_forward_step

norse.torch.functional.lsnn_feed_forward_step#

norse.torch.functional.lsnn_feed_forward_step(input_tensor: Tensor, state: LSNNFeedForwardState, p: LSNNParameters = (tensor(200.), tensor(100.), tensor(0.0012), tensor(0.), tensor(1.), tensor(0.), tensor(1.8000), 'super', 100.0), dt: float = 0.001) Tuple[Tensor, LSNNFeedForwardState][source]#

Euler integration step for LIF Neuron with threshold adaptation. More specifically it implements one integration step of the following ODE

\begin{split} ended with \end{align*}

together with the jump condition

z=Θ(vvth+b)

and transition equations

v=(1z)v+zvreseti=i+inputb=b+βz
Parameters:

input_tensor (torch.Tensor): the input spikes at the current time step s (LSNNFeedForwardState): current state of the lsnn unit p (LSNNParameters): parameters of the lsnn unit dt (float): Integration timestep to use