Source code for norse.torch.module.lif_mc

from typing import Optional, Tuple

import numpy as np
import torch

from norse.torch.functional.lif import LIFState, LIFParameters
from norse.torch.functional.lif_mc import lif_mc_step

from norse.torch.module.snn import SNNRecurrentCell


[docs] class LIFMCRecurrentCell(SNNRecurrentCell): r"""Computes a single euler-integration step of a LIF multi-compartment neuron-model. .. math:: \begin{align*} \dot{v} &= 1/\tau_{\text{mem}} (v_{\text{leak}} \ - g_{\text{coupling}} v + i) \\ \dot{i} &= -1/\tau_{\text{syn}} i \end{align*} together with the jump condition .. math:: z = \Theta(v - v_{\text{th}}) and transition equations .. math:: \begin{align*} v &= (1-z) v + z v_{\text{reset}} \\ i &= i + w_{\text{input}} z_{\text{in}} \\ i &= i + w_{\text{rec}} z_{\text{rec}} \end{align*} where :math:`z_{\text{rec}}` and :math:`z_{\text{in}}` are the recurrent and input spikes respectively. Parameters: input_size (int): Size of the input. Also known as the number of input features. hidden_size (int): Size of the hidden state. Also known as the number of input features. g_coupling (torch.Tensor): conductances between the neuron compartments p (LIFParameters): neuron parameters dt (float): Integration timestep to use autapses (bool): Allow self-connections in the recurrence? Defaults to False. """
[docs] def __init__( self, input_size: int, hidden_size: int, p: LIFParameters = LIFParameters(), g_coupling: Optional[torch.Tensor] = None, **kwargs, ): # pytype: disable=wrong-arg-types super().__init__( activation=None, state_fallback=self.initial_state, input_size=input_size, hidden_size=hidden_size, p=p, **kwargs, ) # pytype: enable=wrong-arg-types self.g_coupling = ( g_coupling if g_coupling is not None else torch.nn.Parameter( torch.randn(hidden_size, hidden_size) / np.sqrt(hidden_size) ) )
def initial_state(self, input_tensor: torch.Tensor) -> LIFState: state = LIFState( z=torch.zeros( input_tensor.shape[0], self.hidden_size, device=input_tensor.device, dtype=input_tensor.dtype, ), v=self.p.v_leak.detach() * torch.ones( input_tensor.shape[0], self.hidden_size, device=input_tensor.device, dtype=input_tensor.dtype, ), i=torch.zeros( input_tensor.shape[0], self.hidden_size, device=input_tensor.device, dtype=input_tensor.dtype, ), ) state.v.requires_grad = True return state def forward( self, input_tensor: torch.Tensor, state: Optional[LIFState] = None ) -> Tuple[torch.Tensor, LIFState]: if state is None: state = self.initial_state(input_tensor) return lif_mc_step( input_tensor, state, self.input_weights, self.recurrent_weights, self.g_coupling, p=self.p, dt=self.dt, )