Source code for norse.torch.module.lif_ex

import torch

from norse.torch.functional.lif_ex import (
    LIFExState,
    LIFExFeedForwardState,
    LIFExParameters,
    lif_ex_step,
    lif_ex_feed_forward_step,
)

from norse.torch.module.snn import SNNCell, SNNRecurrentCell, SNN, SNNRecurrent


[docs] class LIFExCell(SNNCell): r"""Computes a single euler-integration step of a recurrent exponential LIF neuron-model (*without* recurrence) adapted from https://neuronaldynamics.epfl.ch/online/Ch5.S2.html. More specifically it implements one integration step of the following ODE .. math:: \begin{align*} \dot{v} &= 1/\tau_{\text{mem}} \left(v_{\text{leak}} - v + i + \Delta_T exp\left({{v - v_{\text{th}}} \over {\Delta_T}}\right)\right) \\ \dot{i} &= -1/\tau_{\text{syn}} i \end{align*} together with the jump condition .. math:: z = \Theta(v - v_{\text{th}}) and transition equations .. math:: \begin{align*} v &= (1-z) v + z v_{\\text{reset}} \end{align*} where :math:`z_{\text{rec}}` and :math:`z_{\text{in}}` are the recurrent and input spikes respectively. Parameters: input_size (int): Size of the input. hidden_size (int): Size of the hidden state. p (LIFExParameters): Parameters of the LIF neuron model. dt (float): Time step to use. autapses (bool): Allow self-connections in the recurrence? Defaults to False. Examples: >>> batch_size = 16 >>> lif_ex = LIFExCell(10, 20) >>> input = torch.randn(batch_size, 10) >>> output, s0 = lif_ex(input) """
[docs] def __init__(self, p: LIFExParameters = LIFExParameters(), **kwargs): super().__init__( lif_ex_feed_forward_step, self.initial_state, p=p, **kwargs, )
def initial_state(self, input_tensor: torch.Tensor) -> LIFExFeedForwardState: state = LIFExFeedForwardState( v=torch.full( input_tensor.shape, self.p.v_leak.detach(), device=input_tensor.device, dtype=input_tensor.dtype, ), i=torch.zeros( *input_tensor.shape, device=input_tensor.device, dtype=input_tensor.dtype, ), ) state.v.requires_grad = True return state
[docs] class LIFExRecurrentCell(SNNRecurrentCell): r"""Computes a single euler-integration step of a recurrent exponential LIFEx neuron-model (*with* recurrence) adapted from https://neuronaldynamics.epfl.ch/online/Ch5.S2.html. More specifically it implements one integration step of the following ODE .. math:: \begin{align*} \dot{v} &= 1/\tau_{\text{mem}} \left(v_{\text{leak}} - v + i + \Delta_T exp\left({{v - v_{\text{th}}} \over {\Delta_T}}\right)\right) \\ \dot{i} &= -1/\tau_{\text{syn}} i \end{align*} together with the jump condition .. math:: z = \Theta(v - v_{\text{th}}) and transition equations .. math:: \begin{align*} v &= (1-z) v + z v_{\\text{reset}} \\ i &= i + w_{\text{input}} z_{\text{in}} \\ i &= i + w_{\text{rec}} z_{\text{rec}} \end{align*} where :math:`z_{\text{rec}}` and :math:`z_{\text{in}}` are the recurrent and input spikes respectively. Parameters: input_size (int): Size of the input. hidden_size (int): Size of the hidden state. p (LIFExParameters): Parameters of the LIF neuron model. dt (float): Time step to use. a (bool): Allow self-connections in the recurrence? Defaults to False. Examples: >>> batch_size = 16 >>> lif_ex = LIFExRecurrentCell(10, 20) >>> input = torch.randn(batch_size, 10) >>> output, s0 = lif_ex(input) """
[docs] def __init__( self, input_size: int, hidden_size: int, p: LIFExParameters = LIFExParameters(), **kwargs, ): super().__init__( activation=lif_ex_step, state_fallback=self.initial_state, p=p, input_size=input_size, hidden_size=hidden_size, **kwargs, )
def initial_state(self, input_tensor: torch.Tensor) -> LIFExState: dims = (*input_tensor.shape[:-1], self.hidden_size) state = LIFExState( z=torch.zeros( *dims, device=input_tensor.device, dtype=input_tensor.dtype, ), v=torch.full( dims, self.p.v_leak.detach(), device=input_tensor.device, dtype=input_tensor.dtype, ), i=torch.zeros( *dims, device=input_tensor.device, dtype=input_tensor.dtype, ), ) state.v.requires_grad = True return state
[docs] class LIFEx(SNN): """ A neuron layer that wraps a :class:`LIFExCell` in time such that the layer keeps track of temporal sequences of spikes. After application, the layer returns a tuple containing (spikes from all timesteps, state from the last timestep). Example: >>> data = torch.zeros(10, 5, 2) # 10 timesteps, 5 batches, 2 neurons >>> l = LIFEx() >>> l(data) # Returns tuple of (Tensor(10, 5, 2), LIFExState) Parameters: p (LIFExParameters): The neuron parameters as a torch Module, which allows the module to configure neuron parameters as optimizable. Defaults to None. dt (float): Time step to use in integration. Defaults to 0.001. """
[docs] def __init__(self, p: LIFExParameters = LIFExParameters(), **kwargs): super().__init__( activation=lif_ex_feed_forward_step, state_fallback=self.initial_state, p=p, **kwargs, )
def initial_state(self, input_tensor: torch.Tensor) -> LIFExFeedForwardState: state = LIFExFeedForwardState( v=torch.full( input_tensor.shape[1:], # Assume first dimension is time self.p.v_leak.detach(), device=input_tensor.device, dtype=input_tensor.dtype, ), i=torch.zeros( *input_tensor.shape[1:], device=input_tensor.device, dtype=input_tensor.dtype, ), ) state.v.requires_grad = True return state
[docs] class LIFExRecurrent(SNNRecurrent): """ A neuron layer that wraps a :class:`LIFExRecurrentCell` in time such that the layer keeps track of temporal sequences of spikes. After application, the module returns a tuple containing (spikes from all timesteps, state from the last timestep). Example: >>> data = torch.zeros(10, 5, 2) # 10 timesteps, 5 batches, 2 neurons >>> l = LIFExRecurrent(2, 4) >>> l(data) # Returns tuple of (Tensor(10, 5, 4), LIFExState) Parameters: input_size (int): The number of input neurons hidden_size (int): The number of hidden neurons p (LIFExParameters): The neuron parameters as a torch Module, which allows the module to configure neuron parameters as optimizable. Defaults to None. input_weights (torch.Tensor): Weights used for input tensors. Defaults to a random matrix normalized to the number of hidden neurons. recurrent_weights (torch.Tensor): Weights used for input tensors. Defaults to a random matrix normalized to the number of hidden neurons. autapses (bool): Allow self-connections in the recurrence? Defaults to False. Will also remove autapses in custom recurrent weights, if set above. dt (float): Time step to use in integration. Defaults to 0.001. """
[docs] def __init__( self, input_size: int, hidden_size: int, p: LIFExParameters = LIFExParameters(), **kwargs, ): super().__init__( activation=lif_ex_step, state_fallback=self.initial_state, input_size=input_size, hidden_size=hidden_size, p=p, **kwargs, )
def initial_state(self, input_tensor: torch.Tensor) -> LIFExState: dims = ( # Remove first dimension (time) *input_tensor.shape[1:-1], self.hidden_size, ) state = LIFExState( z=torch.zeros( *dims, device=input_tensor.device, dtype=input_tensor.dtype, ), v=torch.full( dims, self.p.v_leak.detach(), device=input_tensor.device, dtype=input_tensor.dtype, ), i=torch.zeros( *dims, device=input_tensor.device, dtype=input_tensor.dtype, ), ) state.v.requires_grad = True return state