norse.torch.functional.lif_refrac module¶
- class norse.torch.functional.lif_refrac.LIFRefracFeedForwardState(lif: norse.torch.functional.lif.LIFFeedForwardState, rho: torch.Tensor)[source]¶
Bases:
tuple
State of a feed forward LIF neuron with absolute refractory period.
- Parameters
lif (LIFFeedForwardState) – state of the feed forward LIF neuron integration
rho (torch.Tensor) – refractory state (count towards zero)
Create new instance of LIFRefracFeedForwardState(lif, rho)
- lif: norse.torch.functional.lif.LIFFeedForwardState¶
Alias for field number 0
- rho: torch.Tensor¶
Alias for field number 1
- class norse.torch.functional.lif_refrac.LIFRefracParameters(lif: norse.torch.functional.lif.LIFParameters = LIFParameters(tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=tensor(100.)), rho_reset: torch.Tensor = tensor(5.))[source]¶
Bases:
tuple
Parameters of a LIF neuron with absolute refractory period.
- Parameters
lif (LIFParameters) – parameters of the LIF neuron integration
rho (torch.Tensor) – refractory state (count towards zero)
Create new instance of LIFRefracParameters(lif, rho_reset)
- lif: norse.torch.functional.lif.LIFParameters¶
Alias for field number 0
- rho_reset: torch.Tensor¶
Alias for field number 1
- class norse.torch.functional.lif_refrac.LIFRefracState(lif: norse.torch.functional.lif.LIFState, rho: torch.Tensor)[source]¶
Bases:
tuple
State of a LIF neuron with absolute refractory period.
- Parameters
lif (LIFState) – state of the LIF neuron integration
rho (torch.Tensor) – refractory state (count towards zero)
Create new instance of LIFRefracState(lif, rho)
- lif: norse.torch.functional.lif.LIFState¶
Alias for field number 0
- rho: torch.Tensor¶
Alias for field number 1
- norse.torch.functional.lif_refrac.compute_refractory_update(state: norse.torch.functional.lif_refrac.LIFRefracState, z_new: torch.Tensor, v_new: torch.Tensor, p: norse.torch.functional.lif_refrac.LIFRefracParameters = LIFRefracParameters()) Tuple[torch.Tensor, torch.Tensor, torch.Tensor] [source]¶
- norse.torch.functional.lif_refrac.compute_refractory_update(state: norse.torch.functional.lif_refrac.LIFRefracFeedForwardState, z_new: torch.Tensor, v_new: torch.Tensor, p: norse.torch.functional.lif_refrac.LIFRefracParameters = LIFRefracParameters()) Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Compute the refractory update.
- Parameters
state (LIFRefracState) – Initial state of the refractory neuron.
z_new (torch.Tensor) – New spikes that were generated.
v_new (torch.Tensor) – New voltage after the lif update step.
p (torch.Tensor) – Refractoryp.
- Return type
- norse.torch.functional.lif_refrac.lif_refrac_feed_forward_step(input_tensor, state, p=LIFRefracParameters(lif=LIFParameters(tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=tensor(100.)), rho_reset=tensor(5.)), dt=0.001)[source]¶
- Computes a single euler-integration step of a feed forward
LIF neuron-model with a refractory period.
- Parameters
input_tensor (torch.Tensor) – the input spikes at the current time step
s (LIFRefracFeedForwardState) – state at the current time step
p (LIFRefracParameters) – parameters of the lif neuron
dt (float) – Integration timestep to use
- Return type
- norse.torch.functional.lif_refrac.lif_refrac_step(input_tensor, state, input_weights, recurrent_weights, p=LIFRefracParameters(lif=LIFParameters(tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=tensor(100.)), rho_reset=tensor(5.)), dt=0.001)[source]¶
- Computes a single euler-integration step of a recurrently connected
LIF neuron-model with a refractory period.
- Parameters
input_tensor (torch.Tensor) – the input spikes at the current time step
s (LIFRefracState) – state at the current time step
input_weights (torch.Tensor) – synaptic weights for incoming spikes
recurrent_weights (torch.Tensor) – synaptic weights for recurrent spikes
p (LIFRefracParameters) – parameters of the lif neuron
dt (float) – Integration timestep to use
- Return type