norse.torch.functional.lif_mc module¶
- norse.torch.functional.lif_mc.lif_mc_feed_forward_step(input_tensor, state, g_coupling, p=LIFParameters(tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=tensor(100.)), dt=0.001)[source]¶
Computes a single euler-integration feed forward step of a LIF multi-compartment neuron-model.
- Parameters
input_tensor (torch.Tensor) – the (weighted) input spikes at the current time step
s (LIFFeedForwardState) – current state of the neuron
g_coupling (torch.Tensor) – conductances between the neuron compartments
p (LIFParameters) – neuron parameters
dt (float) – Integration timestep to use
- Return type
- norse.torch.functional.lif_mc.lif_mc_step(input_tensor, state, input_weights, recurrent_weights, g_coupling, p=LIFParameters(tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=tensor(100.)), dt=0.001)[source]¶
Computes a single euler-integration step of a LIF multi-compartment neuron-model.
- Parameters
input_tensor (torch.Tensor) – the input spikes at the current time step
s (LIFState) – current state of the neuron
input_weights (torch.Tensor) – synaptic weights for incoming spikes
recurrent_weights (torch.Tensor) – synaptic weights for recurrent spikes
g_coupling (torch.Tensor) – conductances between the neuron compartments
p (LIFParameters) – neuron parameters
dt (float) – Integration timestep to use
- Return type