norse.torch.module.lif_ex module¶
- class norse.torch.module.lif_ex.LIFEx(p=LIFExParameters(delta_T=tensor(0.5000), tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=100.0), **kwargs)[source]¶
Bases:
norse.torch.module.snn.SNN
A neuron layer that wraps a
LIFExCell
in time such that the layer keeps track of temporal sequences of spikes. After application, the layer returns a tuple containing(spikes from all timesteps, state from the last timestep).
Example
>>> data = torch.zeros(10, 5, 2) # 10 timesteps, 5 batches, 2 neurons >>> l = LIFEx() >>> l(data) # Returns tuple of (Tensor(10, 5, 2), LIFExState)
- Parameters
p (LIFExParameters) – The neuron parameters as a torch Module, which allows the module to configure neuron parameters as optimizable. Defaults to None.
dt (float) – Time step to use in integration. Defaults to 0.001.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- class norse.torch.module.lif_ex.LIFExCell(p=LIFExParameters(delta_T=tensor(0.5000), tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=100.0), **kwargs)[source]¶
Bases:
norse.torch.module.snn.SNNCell
Computes a single euler-integration step of a recurrent exponential LIF neuron-model (without recurrence) adapted from https://neuronaldynamics.epfl.ch/online/Ch5.S2.html. More specifically it implements one integration step of the following ODE
\[\begin{split}\begin{align*} \dot{v} &= 1/\tau_{\text{mem}} \left(v_{\text{leak}} - v + i + \Delta_T exp\left({{v - v_{\text{th}}} \over {\Delta_T}}\right)\right) \\ \dot{i} &= -1/\tau_{\text{syn}} i \end{align*}\end{split}\]together with the jump condition
\[z = \Theta(v - v_{\text{th}})\]and transition equations
\[\begin{split}\begin{align*} v &= (1-z) v + z v_{\\text{reset}} \end{align*}\end{split}\]where \(z_{\text{rec}}\) and \(z_{\text{in}}\) are the recurrent and input spikes respectively.
- Parameters
input_size (int) – Size of the input.
hidden_size (int) – Size of the hidden state.
p (LIFExParameters) – Parameters of the LIF neuron model.
dt (float) – Time step to use.
autapses (bool) – Allow self-connections in the recurrence? Defaults to False.
Examples
>>> batch_size = 16 >>> lif_ex = LIFExCell(10, 20) >>> input = torch.randn(batch_size, 10) >>> output, s0 = lif_ex(input)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- class norse.torch.module.lif_ex.LIFExRecurrent(input_size, hidden_size, p=LIFExParameters(delta_T=tensor(0.5000), tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=100.0), **kwargs)[source]¶
Bases:
norse.torch.module.snn.SNNRecurrent
A neuron layer that wraps a
LIFExRecurrentCell
in time such that the layer keeps track of temporal sequences of spikes. After application, the module returns a tuple containing(spikes from all timesteps, state from the last timestep).
Example
>>> data = torch.zeros(10, 5, 2) # 10 timesteps, 5 batches, 2 neurons >>> l = LIFExRecurrent(2, 4) >>> l(data) # Returns tuple of (Tensor(10, 5, 4), LIFExState)
- Parameters
input_size (int) – The number of input neurons
hidden_size (int) – The number of hidden neurons
p (LIFExParameters) – The neuron parameters as a torch Module, which allows the module to configure neuron parameters as optimizable. Defaults to None.
input_weights (torch.Tensor) – Weights used for input tensors. Defaults to a random matrix normalized to the number of hidden neurons.
recurrent_weights (torch.Tensor) – Weights used for input tensors. Defaults to a random matrix normalized to the number of hidden neurons.
autapses (bool) – Allow self-connections in the recurrence? Defaults to False. Will also remove autapses in custom recurrent weights, if set above.
dt (float) – Time step to use in integration. Defaults to 0.001.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- class norse.torch.module.lif_ex.LIFExRecurrentCell(input_size, hidden_size, p=LIFExParameters(delta_T=tensor(0.5000), tau_syn_inv=tensor(200.), tau_mem_inv=tensor(100.), v_leak=tensor(0.), v_th=tensor(1.), v_reset=tensor(0.), method='super', alpha=100.0), **kwargs)[source]¶
Bases:
norse.torch.module.snn.SNNRecurrentCell
Computes a single euler-integration step of a recurrent exponential LIFEx neuron-model (with recurrence) adapted from https://neuronaldynamics.epfl.ch/online/Ch5.S2.html. More specifically it implements one integration step of the following ODE
\[\begin{split}\begin{align*} \dot{v} &= 1/\tau_{\text{mem}} \left(v_{\text{leak}} - v + i + \Delta_T exp\left({{v - v_{\text{th}}} \over {\Delta_T}}\right)\right) \\ \dot{i} &= -1/\tau_{\text{syn}} i \end{align*}\end{split}\]together with the jump condition
\[z = \Theta(v - v_{\text{th}})\]and transition equations
\[\begin{split}\begin{align*} v &= (1-z) v + z v_{\\text{reset}} \\ i &= i + w_{\text{input}} z_{\text{in}} \\ i &= i + w_{\text{rec}} z_{\text{rec}} \end{align*}\end{split}\]where \(z_{\text{rec}}\) and \(z_{\text{in}}\) are the recurrent and input spikes respectively.
- Parameters
input_size (int) – Size of the input.
hidden_size (int) – Size of the hidden state.
p (LIFExParameters) – Parameters of the LIF neuron model.
dt (float) – Time step to use.
a (bool) – Allow self-connections in the recurrence? Defaults to False.
Examples
>>> batch_size = 16 >>> lif_ex = LIFExRecurrentCell(10, 20) >>> input = torch.randn(batch_size, 10) >>> output, s0 = lif_ex(input)
Initializes internal Module state, shared by both nn.Module and ScriptModule.