norse.torch.models.vgg module¶
- class norse.torch.models.vgg.VGG(features, num_classes=1000, init_weights=True)[source]¶
Bases:
torch.nn.modules.module.Module
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- forward(x)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- norse.torch.models.vgg.vgg11(pretrained=False, progress=True, **kwargs)[source]¶
VGG 11-layer model (configuration “A”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg11_bn(pretrained=False, progress=True, **kwargs)[source]¶
VGG 11-layer model (configuration “A”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg13(pretrained=False, progress=True, **kwargs)[source]¶
VGG 13-layer model (configuration “B”) “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg13_bn(pretrained=False, progress=True, **kwargs)[source]¶
VGG 13-layer model (configuration “B”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg16(pretrained=False, progress=True, **kwargs)[source]¶
VGG 16-layer model (configuration “D”) “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg16_bn(pretrained=False, progress=True, **kwargs)[source]¶
VGG 16-layer model (configuration “D”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg19(pretrained=False, progress=True, **kwargs)[source]¶
VGG 19-layer model (configuration “E”) “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool
- norse.torch.models.vgg.vgg19_bn(pretrained=False, progress=True, **kwargs)[source]¶
VGG 19-layer model (configuration ‘E’) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition” :param pretrained: If True, returns a model pre-trained on ImageNet :type pretrained: bool :param progress: If True, displays a progress bar of the download to stderr :type progress: bool