norse.task.mnist_pl module¶
In this task, we train a spiking convolutional network to learn the MNIST digit recognition task.
This version uses the PyTorch Lightning library to reduce the amount of boilerplate code around logging, checkpointing, training, etc.
- class norse.task.mnist_pl.LIFConvNet(input_features, seq_length, learning_rate, model='super', optimizer='adam', input_scale=1.0, only_output=False, only_first_spike=False)[source]¶
Bases:
pytorch_lightning.core.lightning.LightningModule
- configure_optimizers()[source]¶
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Returns
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_dict
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_dict
.Tuple of dictionaries as described above, with an optional
"frequency"
key.None - Fit will run without any optimizer.
The
lr_dict
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_dict = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_dict
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
The
frequency
value specified in a dict along with theoptimizer
key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:In the former case, all optimizers will operate on the given batch in each optimization step.
In the latter, only one optimizer will operate on the given batch at every step.
This is different from the
frequency
value specified in thelr_dict
mentioned above.def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {"optimizer": optimizer_one, "frequency": 5}, {"optimizer": optimizer_two, "frequency": 10}, ]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the
lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.Examples:
# most cases. no learning rate scheduler def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers # each optimizer has its own scheduler def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = { 'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step' # called after each training step } dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer and learning rate scheduler as needed.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.
- forward(x)[source]¶
Same as
torch.nn.Module.forward()
.- Parameters
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns
Your model’s output
- training_step(batch, batch_idx)[source]¶
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx (int) – Integer displaying index of this batch
optimizer_idx (int) – When using multiple optimizers, this argument will also be present.
hiddens (
Tensor
) – Passed in if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0.
- Returns
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch
Note
Returning
None
is currently not supported for multi-GPU or TPU, or with 16-bit precision enabled.In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder ... if optimizer_idx == 1: # do training_step with decoder ...
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step ... out, hiddens = self.lstm(data, hiddens) ... return {"loss": loss, "hiddens": hiddens}
Note
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.